e-journal
Beam-Surface Scattering Studies of the Individual and Combined Effects of VUV Radiation and Hyperthermal O, O2, or Ar on FEP Teflon Surfaces
ABSTRACT
Beam-surface scattering experiments were used to probe products that scattered from FEP Teflon surfaces during bombardment by various combinations of atomic and molecular oxygen, Ar atoms, and vacuum ultraviolet (VUV) light. A laserbreakdown source was used to create hyperthermal (translational energies in the range 4-13 eV) beams of argon and atomic/molecular oxygen. The average incidence energy of these beams was tunable and was controlled precisely with a synchronized chopper wheel. A filtered deuterium lamp provided a source of VUV light in a narrow-wavelength range centered at 161 nm. Volatile products that exited the surfaces were monitored with a rotatable mass spectrometer detector. Hyperthermal O atoms with average translational
energies above ∼4 eV may react directly with a pristine FEP Teflon surface, and the reactivity appears to increase with the translational energy of the incident O atoms. VUV light or highly energetic collisions of O2 or Ar may break chemical bonds and lead to the ejection of volatile products; the ejection of volatile products is enhanced when the surface is subjected to VUV light and energetic collisions simultaneously. Exposure to VUV light or to hyperthermal O2 or Ar may increase the reactivity of an FEP Teflon surface to O atoms.
KEYWORDS: atomic oxygen • FEP Teflon • beam-surface scattering • VUV photodegradation • collision-induced dissociation • space environmental effects • synergistic effects
Tidak ada salinan data
Tidak tersedia versi lain