e-journal
Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions
Abstract
Shifts in the timing and magnitude of the spring plankton bloom in response to climate change have been observed across a wide range of aquatic systems. We used meta-analysis to investigate phenological responses of marine and freshwater plankton communities in mesocosms subjected to experimental manipulations of temperature and light intensity. Systems differed with
respect to the dominant mesozooplankton (copepods in seawater and daphnids in freshwater). Higher water temperatures advanced the bloom timing of most functional plankton groups in both marine and freshwater systems. In contrast to timing, responses of bloom magnitudes were more variable among taxa and systems and were influenced by light intensity and trophic interactions. Increased light levels increased the magnitude of the spring peaks of most phytoplankton taxa and of total phytoplankton biomass. Intensified size-selective grazing of copepods in warming scenarios affected phytoplankton size structure and lowered intermediate (20–200 lm)-sized phytoplankton in
marine systems. In contrast, plankton peak magnitudes in
freshwater systems were unaffected by temperature, but
decreased at lower light intensities, suggesting that filter
feeding daphnids are sensitive to changes in algal carrying
capacity as mediated by light supply. Our analysis confirms
the general shift toward earlier blooms at increased temperature
in both marine and freshwater systems and supports predictions that effects of climate change on plankton production will vary among sites, depending on resource limitation and species composition.
Tidak ada salinan data
Tidak tersedia versi lain