Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Mixed modified fruit fly optimization algorithm with general regression neural network to build oil and gold prices forecasting model

Wen-Tsao Pan - Nama Orang;

When facing a clouded global economy, many countries would increase their gold reserves.
On the other hand, oil supply and demand depends on the political and economic situations of oil
producing countries and their production technologies. Both oil and gold reserve play important roles
in the economic development of a country. The paper aims to discuss this issue.
Design/methodology/approach – This paper uses the historical data of oil and gold prices
as research data, and uses the historical price tendency charts of oil and gold, as well as cluster
analysis, to discuss the correlation between the historical data of oil and gold prices. By referring
to the technical index equation of stocks, the technical indices of oil and gold prices are calculated
as the independent variable and the closing price as the dependent variable of the forecasting
model.
Findings – The findings indicate that there is no obvious correlation between the price tendencies of
oil and gold. According to five evaluating indicators, the MFOAGRNN forecast model has better
forecast ability than the other three forecasting models.
Originality/value – This paper explored the correlation between oil and gold prices, and built oil and
gold prices forecasting models. In addition, this paper proposes a modified FOA (MFOA), where an
escape parameter D is added to Si. The findings showed that the forecasting model that combines MFOA
and GRNN has the best ability to forecast the closing price of oil and gold.

Keywords Information technology, Algorithms, Optimization techniques, Economics, Modelling,
Artificial intelligence


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Kybernetes
No. Panggil
-
Penerbit
: Emerald Group., 2014
Deskripsi Fisik
Kybernetes Vol. 43 No. 7, 2014
Bahasa
English
ISBN/ISSN
-
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
EKONOMI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Asmawati/Syahrial
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Mixed modified fruit fly optimization algorithm with general regression neural network to build oil and gold prices forecasting model
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?