e-book
Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications
This book is the sixth edition of Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Those who have used the previous edition will notice the extended title as some of the topics dealt with cannot be regarded as basic techniques. The book also has acquired a new chapter on stem cells, reflecting the current upsurge in interest in this area. Chapter 2, Training Programs, which is designed to
enhance the use of this book as a teaching manual in addition to its role as a reference text, is now moved to the third to last chapter, on the assumption that instructors and trainees or students should have spent some time on the earlier chapters first, before attempting the exercises.
The number of color plate pages has been extended and, in combination with Figure 16.2, the book now provides
photographs of around 40 different cell lines, including primary cultures, equipment, and processes. There are four new plates, two of stem cells and two of specialized cells (Courtesy of Cell Applications, Inc.). I am greatly indebted to Yvonne Reid and Greg Sykes of ATCC, Peter Thraves of ECACC, and many others for kindly providing illustrations. I hope that the color plates, in particular, will encourage readers to look at their cells more carefully and become sensitive to any changes that occur during routine maintenance. For most of the book, I have retained the emphasis of previous editions and focused on basic techniques with some examples of more specialized cultures and methods.
These techniques are presented as detailed step-by-step protocols that should give sufficient information to carry out a procedure without recourse to the prime literature. There is also introductory material to each protocol explaining the background and supplementary information providing alternative procedures and applications. Some basic biology is explained in Chapter 2, but it is assumed that the reader will have a basic knowledge of anatomy, histology, biochemistry, and cell and molecular biology. The book is targeted at
those with little or no previous experience in tissue culture, including technicians in training, senior undergraduates, graduate students, postdoctoral workers, and clinicians with an interest in laboratory science. Those working in the biotechnology industry, including cell production, screening assays, and quality assurance, should also find this book of value.
The specialized techniques chapter 27, no longer contains protocols in molecular techniques as there are many other sources of these [e.g., Sambrook and Russell, 2006; Ausubel et al., 2009], and it is also an area in which I am not well versed. Similarly Chapter 26 on scale-up serves as an interface with biotechnology and provides some background on systems for increasing cell yield, but takes no account of full-scale biopharmaceutical production and downstream processes. The section on automation has been extended with more examples of the use of robotics in cell culture. Protocols are given a distinct appearance from the rest of
the text. Reagents that are specific to a particular protocol are detailed in the materials sections of the protocols and the recipes for the common reagents, such as Hanks’s BSS or trypsin, are given in Appendix I at the end of the book.
Details of the sources of equipment and materials are given in Appendix II. The suppliers’ list (Appendix III) has been updated, but addresses, telephone and fax numbers, and email addresses are not provided, and only the website is given, on the assumption that all necessary contact information will be found there. Suppliers are not cited in the text unless for a specialized item.
Abbreviations used in the text are listed separately after this preface. Conventions employed throughout are D-PBSA for Dulbecco’s PBS without Ca2+ and Mg2+ and UPW for ultrapure water, regardless of how it is prepared. Concentrations are given in molarity wherever possible, and actual weights have been omitted from the media tables on the assumption that very few people will attempt to make up their own media but will, more likely, want to compare constituents, for which molar equivalents are more useful.
Tidak ada salinan data
Tidak tersedia versi lain