Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Optimising errors in signaling corporate collapse using MCCCRA

Ghassan Hossari - Nama Orang;

Purpose – The purpose of this paper is to put forward an innovative approach for reducing the
variation between Type I and Type II errors in the context of ratio-based modeling of corporate
collapse, without compromising the accuracy of the predictive model. Its contribution to the literature
lies in resolving the problematic trade-off between predictive accuracy and variations between the two
types of errors.
Design/methodology/approach – The methodological approach in this paper – called MCCCRA –
utilizes a novel multi-classification matrix based on a combination of correlation and regression
analysis, with the former being subject to optimisation criteria. In order to ascertain its accuracy in
signaling collapse, MCCCRA is empirically tested against multiple discriminant analysis (MDA).
Findings – Based on a data sample of 899 US publicly listed companies, the empirical results indicate
that in addition to a high level of accuracy in signaling collapse, MCCCRA generates lower variability
between Type I and Type II errors when compared to MDA.
Originality/value – Although correlation and regression analysis are long-standing statistical tools,
the optimisation constraints that are applied to the correlations are unique. Moreover, the
multi-classification matrix is a first in signaling collapse. By providing economic insight into more
stable financial modeling, these innovations make an original contribution to the literature.

Keywords United States of America, Accounting, Modelling, Business failures, Corporate collapse,
Financial ratios, Multiple discriminant analysis,Multi-classification constrained-covariance regression analysis


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
International Journal of Accounting and Information Management
No. Panggil
-
Penerbit
: Emerald Group., 2012
Deskripsi Fisik
International Journal of Accounting and Information Management Vol. 20 No. 3, 2012 pp. 300-316
Bahasa
English
ISBN/ISSN
-
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
AKUNTANSI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Asmawati/Syahrial
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Optimising errors in signaling corporate collapse using MCCCRA
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?