Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

How Robust Can a Machine Learning Approach Be for Classifying Encrypted VoIP?

Riyad Alshammari - Nama Orang; A. Nur Zincir-Heywood - Nama Orang;

Abstract

The classification of encrypted network traffic represents an important issue for network management and security tasks including quality of service, firewall enforcement, and security. Traffic classification becomes more challenging since the traditional techniques, such as port numbers or Deep Packet Inspection, are ineffective against Peer-to-Peer Voice over Internet Protocol (VoIP) applications, which used non-standard ports and encryption. Moreover, traffic classification also represents a particularly challenging application domain for machine learning (ML). Solutions should ideally be both simple—therefore efficient to deploy—and accurate. Recent advances in ML provide the opportunity to decompose the original problem into a subset of classifiers with non-overlapping behaviors, in effect providing further insight into the problem domain and increasing the throughput of solutions. In this work, we investigate the robustness of an ML approach to classify encrypted traffic on not only different network traffic but also against evasion attacks. Our ML based approach only employs statistical network traffic flow features without using the Internet Protocol addresses, source/destination ports, and payload information to unveil encrypted VoIP applications in network traffic. What we mean by robust signatures is that the signatures learned by training on one network are still valid when they are applied to traffic coming from totally different locations, networks, time periods, and also against evasion attacks. The results on different network traces, as well as on the evasion of a Skype classifier, demonstrate that the performance of the signatures are very promising, which implies that the statistical information based on the network layer with the use of ML can achieve high classification accuracy and produce robust signatures


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: Springer US., 2015
Deskripsi Fisik
J Netw Syst Manage (2015) 23:830–869 DOI 10.1007/s10922-014-9324-6
Bahasa
English
ISBN/ISSN
1573-7705
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
SISTEM MANAJEMEN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ETY
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • How Robust Can a Machine Learning Approach Be for Classifying Encrypted VoIP?
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?