Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of A comparative study of multi-objective optimal power flow based on particle swarm, evolutionary programming, and genetic algorithm
Penanda Bagikan

e-journal

A comparative study of multi-objective optimal power flow based on particle swarm, evolutionary programming, and genetic algorithm

Solmaz Kahourzade - Nama Orang; Amin Mahmoudi - Nama Orang; Hazlie Bin Mokhlis - Nama Orang;

Abstract This paper compares the performance of three population-based algorithms including particle swarm optimization (PSO), evolutionary programming (EP), and genetic algorithm (GA) to solve the multi-objective optimal power flow (OPF) problem. The unattractive characteristics of the cost-based OPF including loss, voltage profile, and emission justifies the necessity of multi-objective OPF study. This
study presents the programming results of the nine essential single-objective and multi-objective functions of OPF problem. The considered objective functions include cost, active power loss, voltage stability index, and emission. The multiobjective optimizations include cost and active power loss,
cost and voltage stability index, active power loss and voltage stability index, cost and emission, and finally cost, active power loss, and voltage stability index. To solve the multiobjective OPF problem, Pareto optimal method is used to form the Pareto optimal set. A fuzzy decision-based mechanism
is applied to select the best comprised solution. In this work, to decrease the running time of load flow calculation, a new approach including combined Newton–Raphson and Fast-Decouple is conducted. The proposed methods are tested on IEEE 30-bus test system and the best method for each objective is determined based on the total cost and the convergence values of the considered objectives. The programming results indicate that based on the inter-related nature of the objective functions, a control system cannot be recommended based on individual optimizations and the secondary criteria should also be considered.

Keywords Evolutionary programming · Genetic algorithm · Multi-objective optimal power flow · Particle
swarm · Pareto optimal method


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Electronic Engineering (2015) Volume 97:1–12
No. Panggil
-
Penerbit
: Springer-Verlag Berlin Heidelberg., 2015
Deskripsi Fisik
Electronic Engineering (2015) Volume 97:1–12
Bahasa
English
ISBN/ISSN
1432-0487
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNIK ELEKTRO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ETY
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A comparative study of multi-objective optimal power flow based on particle swarm, evolutionary programming, and genetic algorithm
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?