Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Joint latent class models for longitudinal and time-to-event data: A review

Ce´ cile Proust-Lima [et al.] - Nama Orang;

Most statistical developments in the joint modelling area have focused on the shared random-effect
models that include characteristics of the longitudinal marker as predictors in the model for the timeto-
event. A less well-known approach is the joint latent class model which consists in assuming that a
latent class structure entirely captures the correlation between the longitudinal marker trajectory and
the risk of the event. Owing to its flexibility in modelling the dependency between the longitudinal
marker and the event time, as well as its ability to include covariates, the joint latent class model may
be particularly suited for prediction problems. This article aims at giving an overview of joint latent
class modelling, especially in the prediction context. The authors introduce the model, discuss
estimation and goodness-of-fit, and compare it with the shared random-effect model. Then, dynamic
predictive tools derived from joint latent class models, as well as measures to evaluate their dynamic
predictive accuracy, are presented. A detailed illustration of the methods is given in the context of the
prediction of prostate cancer recurrence after radiation therapy based on repeated measures of
Prostate Specific Antigen.

Keywords
Brier score, joint model, longitudinal data, mixture model, predictive accuracy, prognosis, prostate cancer


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Statistical Methods in Medical Research
No. Panggil
-
Penerbit
London : SAGE., 2014
Deskripsi Fisik
Statistical Methods in Medical Research 2014, Vol. 23(1) 74–90
Bahasa
English
ISBN/ISSN
DOI: 10.1177/0962280
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
2014, Vol. 23(1)
Subjek
STATISTIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT: Joint latent class models for longitudinal and time-to-event data: A review
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?