Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

An Incremental Clustering-Based Fault Detection Algorithm for Class-Imbalanced Process Data

Jueun Kwak - Nama Orang; Taehyung Lee - Nama Orang; Chang Ouk Kim - Nama Orang;

Abstract
Training fault detection model requires advanced data-mining algorithms when the growth rate of the process data is notably high and normal-class data overwhelm fault-class data in number. Most standard classification algorithms, such as support vector machines (SVMs), can handle moderate sizes of
training data and assume balanced class distributions. When the class sizes are highly imbalanced, the standard algorithms tend to strongly favor the majority class and provide a notably low detection
of the minority class as a result. In this paper, we propose an online fault detection algorithm based on incremental clustering. The algorithm accurately finds wafer faults even in severe class distribution skews and efficiently processes massive sensor data in terms of reductions in the required storage. We tested our algorithm on illustrative examples and an industrial example. The algorithm performed well with the illustrative examples that included imbalanced class distributions of Gaussian and non-Gaussian types and process drifts. In the industrial example, which simulated real data from a plasma etcher, we verified that the performance of the algorithm was better than that of the standard SVM, one-class SVM and three instancebased fault detection algorithms that are typically used in the
literature.

Index Terms—Fault detection, class imbalance data, data mining, incremental clustering, process drift.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 28, NO. 3, AUGUST 2015
No. Panggil
-
Penerbit
: IEEE., 2015
Deskripsi Fisik
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 28, NO. 3, AUGUST 2015
Bahasa
English
ISBN/ISSN
0894-6507
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 28, NO. 3, AUGUST 2015
Subjek
SEMIKONDUKTOR
DATA MINING
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ETY
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • An Incremental Clustering-Based Fault Detection Algorithm for Class-Imbalanced Process Data
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?