Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes

Q. Peter He - Nama Orang; Jin Wang - Nama Orang;

Abstract
It has been recognized that effective fault detection techniques can help semiconductor manufacturers reduce scrap, increase equipment uptime, and reduce the usage of test wafers. Traditional univariate statistical process control charts
have long been used for fault detection. Recently, multivariate statistical fault detection methods such as principal component analysis (PCA)-based methods have drawn increasing interest in the semiconductor manufacturing industry. However, the unique characteristics of the semiconductor processes, such as nonlinearity in most batch processes, multimodal batch trajectories due to product mix, and process steps with variable durations, have posed some difficulties to the PCA-based methods. To explicitly account for these unique characteristics, a fault detection method using the k-nearest neighbor rule (FD-kNN) is developed in this paper. Because in fault detection faults are usually not identified and characterized beforehand, in this paper the traditional kNN algorithm is adapted such that only normal operation data is needed. Because the developed method makes use of the kNN
rule, which is a nonlinear classifier, it naturally handles possible nonlinearity in the data. Also, because the FD-kNN method makes decisions based on small local neighborhoods of similar batches, it is well suited for multimodal cases. Another feature of the proposed FD-kNN method, which is essential for online fault detection, is that the data preprocessing is performed automatically without human intervention. These capabilities of the developed FD-kNN method are demonstrated by simulated illustrative examples as well as an industrial example.

Index Terms—Fault detection, k-nearest neighbor rule, pattern recognition, semiconductor manufacturing, statistical process monitoring.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 20, NO. 4, NOVEMBER 2007
No. Panggil
-
Penerbit
: IEEE., 2007
Deskripsi Fisik
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 20, NO. 4, NOVEMBER 2007
Bahasa
English
ISBN/ISSN
0894-6507
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 20, NO. 4, NOVEMBER 2007
Subjek
SEMIKONDUKTOR
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ETY
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?