Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Testing a model to predict online cheating—Much ado about nothing

Victoria Beck - Nama Orang;

Much has been written about student and faculty opinions on academic integrity in testing. Currently,
concerns appear to focus more narrowly on online testing, generally based on anecdotal assumptions that
online students are more likely to engage in academic dishonesty in testing than students in traditional oncampus courses. To address such assumptions, a statistical model to predict examination scores was recently
used to predict academic dishonesty in testing. Using measures of human capital variables (for example,
grade point average, class rank) to predict examination scores, the model provides for a comparison of R2
statistics. This model proposes that the more human capital variables explain variation in examination scores,
the more likely the examination scores reflect students’ abilities and the less likely academic dishonesty was
involved in testing. The only study to employ this model did provide some support for the assertion that
lack of test monitoring in online courses may result in a greater degree of academic dishonesty. In this study,
however, a further test of the predictive model resulted in contradictory findings. The disparate findings
between prior research and the current study may have been due to the use of additional control variables
and techniques designed to limit academic dishonesty in online testing.

Keywords: Online cheating, predicting academic dishonesty


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Active Learning in Higher Education
No. Panggil
-
Penerbit
New York : SAGE Publications Ltd., 2014
Deskripsi Fisik
Active Learning in Higher Education 2014, Vol. 15(1) 65– 75
Bahasa
English
ISBN/ISSN
DOI: 10.1177/1469787
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
2014, Vol. 15(1)
Subjek
PENDIDIKAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT: Testing a model to predict online cheating—Much ado about nothing
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?