Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps

Fatima Adly [et.al.] - Nama Orang;

Abstract—Defect detection and classification in semiconductor wafers has received an increasing attention from both industry and academia alike. Wafer defects are a serious problem that could cause massive losses to the companies’ yield. The defects occur as a result of a lengthy and complex fabrication process involving hundreds of stages, and they can create unique patterns. If these patterns were to be identified and classified correctly, then the root of the fabrication problem can
be recognized and eventually resolved. Machine learning (ML) techniques have been widely accepted and are well suited for such classification-/identification problems. However, none of the existing ML model’s performance exceeds 96% in identification accuracy for such tasks. In this paper, we develop a
state-of-the-art classifying algorithm using multiple ML techniques, relying on a general-regression-network-based consensus learning model along with a powerful randomization technique. We compare our proposed method with the widely used ML models in terms of model accuracy, stability, and time complexity. Our method has proved to be more accurate and stable as compared to any of the existing algorithms reported in the literature, achieving its accuracy of 99.8%, stability of 1.128, and TBM of 15.8 s.

Index Terms—Semiconductor wafer defect patterns, machinelearning, ensembles, randomization, neural-networks.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 28, NO. 2, MAY 2015
No. Panggil
-
Penerbit
: IEEE., 2015
Deskripsi Fisik
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 28, NO. 2, MAY 2015
Bahasa
English
ISBN/ISSN
0894-6507
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 28, NO. 2, MAY 2015
Subjek
SEMIKONDUKTOR
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ETY
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Randomized General Regression Network for Identification of Defect Patterns in Semiconductor Wafer Maps
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?