e-journal
A Temperature-Stable Piezoelectric MEMS Oscillator Using a CMOS PLL Circuit for Temperature Sensing and Oven Control
Abstract—In this paper, design, analysis, and implementation of a piezoelectric microelectromechanical systems (MEMS) oscillator on an ovenized microplatform is presented. An oxiderefill process is used to compensate the first-order temperature coefficient of frequency of MEMS resonators, as well as to realize thermal isolation structures. The technology enables fabrication of low-power ovenized device fusion platforms using standard silicon on insulator wafers. Utilizing the intrinsic requency temperature characteristic of two MEMS resonators, temperature sensing and closed-loop oven-control is realized by phaselocking two MEMS oscillators at an oven-set temperature. The design of the phase-lock control loop is studied using multidomain linear models. Control loop dynamics, noise properties, and
nonideal effects are analyzed. Low-power and low-noise phaselocked loop-based control circuitry is designed in 0.18-μm CMOS to interface with the MEMS resonators. Using the developed technology, an oven controlled MEMS oscillator exhibits an overall frequency drift of
Tidak ada salinan data
Tidak tersedia versi lain