Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Predicting Stay Time of Mobile Users With Contextual Information

Sen Liu [et.al.] - Nama Orang;

Mobile service providers andmanufacturers continue to provide services and devices that take advantage of the location information associated with devices to provide a more personalized experience for users. For many such services, the user experience can be dramatically improved if a mobile device can predict how long a mobile user will stay at the current location. In this paper, we propose to take advantage of contextual information for predicting the stay time of mobile users. Specially, we investigate two strategies for modeling the relevance between it and contextual information, i.e., Stay Status Prediction (SSP) and Stay Time Prediction (STP). SSP is to predict whether a mobile user
will stay at the current location at time point according to the contextual information at , while STP is to directly predict how long a mobile user will stay at the current location.Moreover, we study several typical machine learning models which can be extended for implementing SSP and STP and evaluate their performance with respect to prediction accuracy.We also conduct extensive experiments on real data sets to evaluate several implementations of the proposed strategies in terms of both effectiveness and
efficiency for STP. Note to Practitioners—Automatically and accurately predicting the stay time of mobile users at a location is very important in enabling service providers to offer their customers with the desired services. This work for the first time develops two novel prediction strategies by using historical contextual information and the resulting STP system by using machine learning algorithms. Such a system can be easily implemented in a smart phone that possesses the GPS and other sensors. This work also examines such issues as prediction performance, memory requirements, and energy consumption
of the developed system. The research results show that it can be readily deployed for practical applications.
Index Terms—Contextual information, mobile users, stay time prediction (STP).


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2013
Deskripsi Fisik
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 10, NO. 4, OCTOBER 2013
Bahasa
English
ISBN/ISSN
1545-5955
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 10, NO. 4
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
yuli/agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Predicting Stay Time of Mobile Users With Contextual Information
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?