Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Spatiotemporal Differentiation of Myocardial Infarctions

Hui Yang [et.al.] - Nama Orang;

Myocardial infarction (MI), also known as a heart attack, is the leading cause of death in the U.S. It often occurs due to the occlusion of coronary arteries, thereby leading to insufficient blood and oxygen supply that damage cardiac muscle cells. Because blood vessels are branching throughout the heart, MI occurs at different spatial locations (e.g., anterior and inferior portions) of the heart. The spatial location of the diseased is rupts normal excitation and propagation of cardiac electrical activity in space and time. Most previous studies focused on the relationships between disease and time-domain biomarkers from 12-lead ECG signals (e.g., Q wave, QT interval, ST elevation/depression,
T wave). Few, if any, previous approaches investigated how the spatial location of diseases will alter cardiac vectorcardiogram (VCG) signals in both space and time. This paper presents a novel spatiotemporal warping approach to quantify the dissimilarity of disease-altered patterns in 3-lead spatiotemporal VCG signals. The hypothesis testing shows that there are significant spatiotemporal differences between healthy control, MI-anterior, MI-anterior-septal, MI-anterior-lateral, MI-inferior, and MI-inferior-lateral. Furthermore, we optimize the embedding of each functional recording as a feature vector in the high-dimensional space that preserves the dissimilarity distance matrix. This novel spatial embedding approach facilitates the construction of classification models and yields an averaged accuracy of 95.1% for separating MIs and Healthy Controls (HCs) and an averaged accuracy of 95.8% in identifying anterior-related MIs and inferior-related MIs.
Note to Practitioners—This paper is motivated by our previous findings that cardiovascular diseases, e.g., myocardial infarction, alter cardiac electrical activity in space and time. However, most
of existing approaches focused on the characteristics of time-domain ECG signals (e.g., Q wave, QT interval, ST elevation/depression, T wave). This paper suggests a novel spatiotemporal warping
approach to quantify the dissimilarity of disease-altered patterns in 3-lead space-time VCG signals. We optimize the embedding of each space-time VCG recording as a feature vector in the high-dimensional
space that preserves the dissimilarity distance matrix. In the practice, when a new VCG recording is presented, the pattern dissimilarity will be measured against the database of N patients. Then, a new row and column will be obtained in the warping matrix, and a new feature vector will be embedded in the high-dimensional space. Finally, the classification model will predict cardiac conditions with this feature vector.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2013
Deskripsi Fisik
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 10, NO. 4, OCTOBER 2013
Bahasa
English
ISBN/ISSN
1545-5955
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 10, NO. 4, OCTOBER 2013
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Spatiotemporal Differentiation of Myocardial Infarctions
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?