Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Nonlinear Model Predictive Control for DFIG-Based Wind Power Generation

Xiangjie Liu - Nama Orang; Xiaobing Kong - Nama Orang;

Reliable control and optimal operation of the doubly fed induction generator (DFIG) is necessary to ensure high efficiency and high load-following capability in modern wind power plants. This is often difficult to achieve using conventional linear controllers, as wind power plants are nonlinear and contain many uncertainties. Furthermore, unbalanced conditions often exist on the power network, which can degrade DFIG system performance. Considering the nonlinear DFIG dynamics, this paper proposes a nonlinear modeling technique for DFIG, meanwhile taking into account unbalanced grid conditions. Then, a nonlinear model predictive controller is derived for power control of DFIG. The prediction is calculated based on the input-output feedback linearization (IOFL) scheme. The control is derived by optimization of an objective function that considers both economic and tracking factors under realistic constraints. The simulation results show that the proposed controller can effectively reduce wear
and tear of generating units under normal grid conditions, and reduce the rotor over-current under unbalanced grid conditions, thereby improving the ability of grid-connected wind turbines to
withstand grid voltage faults. Note to Practitioners—Wind energy has been developed extensively
during recent years, due to concerns about emissions from fossil fuel resources. Many new wind farms will employ wind turbines based on doubly-fed induction generators (DFIG), to realize variable-speed constant-frequency wind energy generation. The systems need to reduce wear and tear of generating units under
normal grid conditions, and reduce rotor over-current under unbalanced grid conditions to improve their ability to withstand grid voltage faults. Modeling such systems is the key issue, since the dynamics of DFIG under normal conditions and unbalanced conditions are quite different. This paper proposes a nonlinear modeling technique that considers both grid balanced and unbalanced conditions. A nonlinear model predictive controller is derived for power control of DFIG. Simulation results show the
effectiveness of the proposed nonlinear model predictive control technique.
Index Terms—Doubly fed induction generator, nonlinear model predictive control, power control, wind energy.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2014
Deskripsi Fisik
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 4, OCTOBER 2014
Bahasa
English
ISBN/ISSN
1545-5955
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 11, NO. 4, OCTOBER 2014
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Nonlinear Model Predictive Control for DFIG-Based Wind Power Generation
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?