Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Adaptive Algorithm for Minimizing Cloud Task Length with Prediction Errors

Sheng Di - Nama Orang; Cho-Li Wang - Nama Orang; Franck Cappello - Nama Orang;

Compared to traditional distributed computing like grid system, it is non-trivial to optimize cloud task’s execution performance due to its more constraints like user payment budget and divisible resource demand. In this paper, we analyze in-depth our proposed optimal algorithm minimizing task execution length with divisible resources and payment budget: 1) We derive the upper bound of cloud task length, by taking into account both workload prediction errors and hostload prediction errors. With such state-ofthe-
art bounds, the worst-case task execution performance is predictable, which can improve the quality of service in turn. 2) We design a dynamic version for the algorithm to adapt to the load dynamics over task execution progress, further improving the resource utilization. 3) We rigorously build a cloud prototype over a real cluster environment with 56 virtual machines, and evaluate our algorithm with different levels of resource contention. Cloud users in our cloud system are able to compose various tasks based on off-the-shelf web services. Experiments show that task execution lengths under our algorithm are always close to their theoretical optimal values, even in a competitive situation with limited available resources. We also observe a high level of fair treatment on the resource allocation among all tasks.
Index Terms—Algorithm, cloud computing, divisible-resource allocation, convex optimization, upper bound analysis


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON CLOUD COMPUTING
No. Panggil
-
Penerbit
New York : IEEE., 2014
Deskripsi Fisik
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014
Bahasa
English
ISBN/ISSN
2168-7161
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 2, NO. 2, APRIL-JUNE 2014
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Adaptive Algorithm for Minimizing Cloud Task Length with Prediction Errors
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?