Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Surface-Type Classification Using RGB-D

Andrew Wing Keung To - Nama Orang; Dikai Liu - Nama Orang; Gavin Paul - Nama Orang;

This paper proposes an approach to improve surface-type classification of images containing inconsistently illuminated surfaces. When a mobile inspection robot is visually inspecting surface-types in a dark environment and a directional light source is used to illuminate the surfaces, the images captured may exhibit illumination variance that can be caused by the orientation and distance of the light source relative to the surfaces. In order to accurately classify the surface-types in these images, either the training image dataset needs to completely incorporate
the illumination variance or a way to extract color features that can provide high classification accuracy needs to be identified. In this paper diffused reflectance values are extracted as new color
features to classifying surface-types. In this approach, Red, Green, Blue-Depth (RGB-D) data is collected from the environment, and a reflectance model is used to calculate a diffused reflectance
value for a pixel in each Red, Green, Blue (RGB) color channel. The diffused reflectance values can be used to train a multiclass support vector machine classifier to classify surface-types. Experiments
are conducted in a mock bridge maintenance environment using a portable RGB-Depth sensor package with an attached light source to collect surface-type data. The performance of a classifier trained with diffused reflectance values is compared against classifiers trained with other color features including RGB and color spaces. Results show that the classifier trained with the diffused reflectance values can achieve consistently higher classification accuracy than the classifiers trained with RGB and
features. For test images containing a single surface plane, diffused reflectance values consistently provide greater than 90% classification accuracy; and for test images containing a complex scene with multiple surface-types and surface planes, diffused reflectance values are shown to provide an increase in overall accuracy over RGB and by 49.24% and 13.66%, respectively.
Note to Practitioners—This paper wasmotivated by the problem of inspecting inconsistently illuminated steel surfaces on a bridge structure using a robot manipulator. Existing approaches for color-based surface classification are susceptible to illumination variance. This paper proposes the use of diffused reflectance values, which combines the use of color and depth data to improve accuracy. In this approach, the diffused reflectance values of each image pixel are calculated by using the distance and angle between the surface represented by a pixel and the light source. The diffused reflectance values are calculated in each color channel (Red, Green, Blue) to provide three features to classify different surface-types. This proposed approach can be applied to surface classification tasks where the light source does not uniformly illuminate the scene in the image.
Index Terms—Lambertian diffused reflectance, red, green, bluedepth (RGB-D), surface-type classification.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2014
Deskripsi Fisik
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 2, APRIL 2014
Bahasa
English
ISBN/ISSN
1545-5955
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 11, NO. 2, APRIL 2014
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Surface-Type Classification Using RGB-D
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?