e-journal
Advancing population ecology with integral projection models: a practical guide
1. Integral projectionmodels (IPMs) use information on how an individual’s state influences its vital rates – survival,growth and reproduction – to make population projections. IPMs are constructed from regression models
predicting vital rates from state variables (e.g. size or age) and covariates (e.g. environment). By combining
regressions of vital rates, an IPM provides mechanistic insight into emergent ecological patterns such as population
dynamics, species geographic distributions or life-history strategies.
2. Here, we review important resources for building IPMs and provide a comprehensive guide, with extensive R
code, for their construction. IPMs can be applied to any stage-structured population; here, we illustrate IPMs for
a series of plant life histories of increasing complexity and biological realism, highlighting the utility of various regression methods for capturing biological patterns. We also present case studies illustrating how IPMs can be used to predict species’ geographic distributions and life-history strategies.
3. IPMs can represent a wide range of life histories at any desired level of biological detail.Much of the strength
of IPMs lies in the strength of regression models.Many subtleties arise when scaling from vital rate regressions to
population-level patterns, so we provide a set of diagnostics and guidelines to ensure that models are biologically
plausible. Moreover, IPMs can exploit a large existing suite of analytical tools developed for matrix projection
models.
Key-words: demography, elasticity, life history, matrix projection model, population growth rate,population projectionmodel, sensitivity, stage structure, vital rates
Tidak ada salinan data
Tidak tersedia versi lain