Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Monitoring for Nonlinear Multiple Modes Process Based on LL-SVDD-MRDA

Wenli Du - Nama Orang; Ying Tian - Nama Orang; Feng Qian - Nama Orang;

This study proposes an online monitoring technique for nonlinear multiple-mode problems in industrial processes. The contributions of the proposed technique are summarized as follows: 1) Lazy learning (LL), a new adaptive local modeling method, is introduced for multiple-mode process monitoring. In
this method, multiple modes are separated and accurately modeled online, and the between-mode dynamic process is considered. 2) The modified receptor density algorithm (MRDA) exhibiting superior nonlinear ability is introduced to analyze the residuals between the actual system output and the model-predicted output. The simulation of the Tennessee Eastman process with multiple operation modes shows that compared with other techniques mentioned in this study, the proposed technique performs more
accurately and is more suitable for nonlinear processes with multiple operation modes.
Note to Practitioners—This paper wasmotivated by the problem of fault detection of chemical process. Most chemical processes are nonlinear processes. Especially in the multiple-mode process, nonlinear is more significant, making the process more difficult to monitor. In this paper, we modify the receptor density algorithm (MRDA) and combine it with support vector data description (SVDD) and LL algorithm to monitor nonlinear multiple operation modes chemical processes. In LL-SVDD-MRDA, LL is introduced to solve multiple operation modes, SVDD is adopted to construct one-dimensional distance statistics to reflect the change in high-dimensional data and MRDA is used for nonlinear data monitoring. Our simulation demonstrates that LL-SVDD-MRDA is a highly competitive method for handling nonlinear multiple operation modes chemical processes monitoring.
Index Terms—Between-mode dynamic process, lazy learning (LL), modified receptor density algorithm (MRDA), multiple operationmodes, nonlinear, support vector data description (SVDD).


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2014
Deskripsi Fisik
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 4, OCTOBER 2014
Bahasa
English
ISBN/ISSN
1545-5955
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 11, NO. 4, OCTOBER 2014
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Monitoring for Nonlinear Multiple Modes Process Based on LL-SVDD-MRDA
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?