Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Graph Based Constrained Semi-Supervised Learning Framework via Label Propagation over Adaptive Neighborhood

Zhao Zhang - Nama Orang; Mingbo Zhao - Nama Orang; Tommy W.S. Chow - Nama Orang;

A new graph based constrained semi-supervised learning (G-CSSL) framework is proposed. Pairwise constraints (PC) are used to specify the types (intra- or inter-class) of points with labels. Since the number of labeled data is typically small in SSL setting, the core idea of this framework is to create and enrich the PC sets using the propagated soft labels from both labeled and unlabeled data by special label propagation (SLP), and hence obtaining more supervised information for delivering enhanced performance. We also propose a Two-stage Sparse Coding, termed TSC, for achieving adaptive neighborhood for SLP. The first stage aims at correcting the possible corruptions in data and training an informative dictionary, and the second stage focuses on sparse coding. To deliver enhanced inter-class separation and intra-class compactness, we also present a mixed soft-similarity measure to evaluate the similarity/dissimilarity of constrained pairs using the sparse codes and outputted probabilistic values by SLP. Simulations on the synthetic and real datasets demonstrated the validity of our algorithms for data representation and image recognition, compared with other related state-of-the-art graph based semi-supervised techniques.
Index Terms—Constrained semi-supervised learning, label propagation, adaptive neighborhood, sparse coding, soft-similarity measure, subspace learning


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2015
Deskripsi Fisik
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 9, SEPTEMBER 2015
Bahasa
English
ISBN/ISSN
1041-4347
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 27, NO. 9, SEPTEMBER 2015
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Graph Based Constrained Semi-Supervised Learning Framework via Label Propagation over Adaptive Neighborhood
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?