Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity

Jayanti Ray-Mukherjee [et al.] - Nama Orang;

1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magicmodel’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to addressmulticollinearity.
2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology
and education research will be helpful in interpreting the typicalmultiple regression analyses
conducted on ecological data.
3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors,and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify themagnitude and location of ulticollinearity and suppression in a regression model. In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection,migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow-on analysis from multiple regressions.

Key-words: stepwise regression, hierarchical regression, structure coefficients, standardized partial
regression coefficient, suppressor variable, habitat selection


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Methods in Ecology and Evolution
No. Panggil
-
Penerbit
: British Ecological Society., 2014
Deskripsi Fisik
Methods in Ecology and Evolution 2014, 5, 320–328
Bahasa
English
ISBN/ISSN
doi: 10.1111/2041-21
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
BIOLOGI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Wati/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT:Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?