Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

A Segmentation-Based Method to Extract Structural and Evolutionary Features for Protein Fold Recognition

Abdollah Dehzangi [et.al.] - Nama Orang;

Protein fold recognition (PFR) is considered as an important step towards the protein structure prediction problem. Despite all the efforts that have been made so far, finding an accurate and fast computational approach to solve the PFR still remains a challenging problem for bioinformatics and computational biology. In this study, we propose the concept of segmented-based feature extraction technique to provide local evolutionary information embedded in position specific scoring matrix (PSSM) and structural information embedded in the predicted secondary structure of proteins using SPINE-X. We also employ the concept of occurrence feature to extract global discriminatory information from PSSM and SPINE-X. By applying a support vector machine (SVM) to our extracted features, we enhance the protein fold prediction accuracy for 7.4 percent over the best results reported in the literature. We also report 73.8 percent prediction accuracy for a data set consisting of proteins with less than 25 percent sequence similarity rates and 80.7 percent prediction accuracy for a data set with proteins belonging to 110 folds with less than 40 percent sequence similarity rates. We also investigate the relation between the number of folds and the number of features being used and show that the number of features should be increased to get better protein fold prediction results when the number of folds is relatively large.
Index Terms—Protein fold recognition, feature extraction, structural-based features, evolutionary-based features, segmented distribution, segmented auto covariance, occurrence, support vector machine (SVM)


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
No. Panggil
-
Penerbit
New York : IEEE., 2014
Deskripsi Fisik
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 3, MAY/JUNE 2014
Bahasa
English
ISBN/ISSN
1545-5963
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 11, NO. 3, MAY/JUNE 2014
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. A Segmentation-Based Method to Extract Structural and Evolutionary Features for Protein Fold Recognition
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?