Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Data-Driven Soft-Sensor Modeling for Product Quality Estimation Using Case-Based Reasoning and Fuzzy-Similarity Rough Sets

Ping Zhou [et.al.] - Nama Orang;

Efficient operation of the integrated optimization or automation system in an industrial plant depends mainly on good measurement of product quality. However, measuring or estimating the product quality online in many industrial plants is usually not feasible using the available techniques. In this paper,
a data-driven soft-sensor using case-based reasoning (CBR) and fuzzy-similarity rough sets is proposed for product quality estimation. Owning to the sustained learning ability, the modeling of a CBR soft-sensor does not need any additional model correction which is otherwise required by the neural network based methods to overcome the slow time-varying nature of industrial processes.
Because the conventional -nearest neighbor ( -NN) algorithm is strongly influenced by the value of , an improved -NN algorithm with dynamic adjustment of case similarity threshold is proposed to retrieve sufficientmatching cases formaking a correct estimation. Moreover, considering that the estimation accuracy of the CBR soft-sensor system is closely related to the weights of case feature, a feature weighting algorithm using fuzzy-similarity rough sets is proposed in this paper. This feature weighting
method does not require any transcendental knowledge, and its computation complexity is only linear with respect to the number of cases and attributes. The developed soft-sensor system has been successfully applied in a large grinding plant in China. And the application results show that the system has achieved satisfactory estimation accuracy and adaptation ability.
Note to Practitioners—In the process industry, the product quality reflects the operational and economic performance of a manufacturing process. However, online measurement and control of product quality is generally difficult. In this paper, a data-driven soft-sensor is proposed to online estimate the product quality for a typical grinding process with time-varying dynamics. The method combines an improved CBR soft-sensor algorithm and a feature weighting algorithm using fuzzy-similarity rough
sets. First, the weighs of case features in CBR are determined using the fuzzy-similarity rough sets in offline mode, and then they are used in CBR to accurately estimate the PPS online. The CBR soft-sensor system has been applied in a large industrial grinding plant. The application results show that the soft-sensor system has achieved satisfied estimation precision, good adaptability and robustness, and can be easily realized in practice with low cost and maintenance.
Index Terms—Case feature weighting, case-based reasoning (CBR), data-driven, fuzzy-similarity rough sets (FSRS), product quality estimation, soft-sensor modeling.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2014
Deskripsi Fisik
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 4, OCTOBER 2014
Bahasa
English
ISBN/ISSN
1545-5955
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 11, NO. 4, OCTOBER 2014
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
Tidak Ada Data
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?