Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Backward Path Growth for Efficient Mobile Sequential Recommendation

Jianbin Huang [et.al.] - Nama Orang;

The problem of mobile sequential recommendation is to suggest a route connecting a set of pick-up points for a taxi driver so that he/she is more likely to get passengers with less travel cost. Essentially, a key challenge of this problem is its high computational complexity. In this paper, we propose a novel dynamic programming based method to solve the mobile sequential recommendation problem consisting of two separate stages: an offline pre-processing stage and an online search stage. The offline stage pre-computes potential candidate sequences from a set of pick-up points. A backward incremental sequence generation algorithm is proposed based on the identified iterative property of the cost function. Simultaneously, an incremental pruning policy is adopted in the process of sequence generation to reduce the search space of the potential sequences effectively. In addition, a batch pruning algorithm is further applied to the generated potential sequences to remove some non-optimal sequences of a given length.
Since the pruning effectiveness keeps growing with the increase of the sequence length, at the online stage, our method can efficiently find the optimal driving route for an unloaded taxi in the remaining candidate sequences. Moreover, our method can handle the problem of optimal route search with a maximum cruising distance or a destination constraint. Experimental results on real and synthetic data
sets show that both the pruning ability and the efficiency of our method surpass the state-of-the-art methods. Our techniques can therefore be effectively employed to address the problem of mobile sequential recommendation with many pick-up points in real-world applications.
Index Terms—Mobile sequential recommendation, potential travel distance, backward path growth, sequence pruning


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2015
Deskripsi Fisik
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 1, JANUARY 2015
Bahasa
English
ISBN/ISSN
1041-4347
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 27, NO. 1, JANUARY 2015
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Backward Path Growth for Efficient Mobile Sequential Recommendation
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?