Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Data Acquisition for Probabilistic Nearest-Neighbor Query

Yu-Chieh Lin [et.al.] - Nama Orang;

Management of uncertain data in spatial queries has drawn extensive research interests to consider the granularity of devices and noises in the collection and the delivery of data. Most previous works usually model and handle uncertain data to find the required results directly. However, it is more difficult for users to obtain useful insights when data uncertainty dramatically increases. In this case, users are usually willing to invest more resources to improve the result by reducing the data uncertainty in order to obtain more interesting observations with the existing schemes. In light of this important need, this paper formulates a new problem of selecting a given number of uncertain data objects for acquiring their attribute values to improve the result of the Probabilistic k-Nearest-Neighbor (k-PNN) query. We prove that better query results are guaranteed to be returned with data acquisition, and we devise several algorithms to maximize the expected improvement. We first explore the optimal single-object acquisition for 1-PNN to examine the fundamental problem structure and then propose an efficient algorithm that discovers crucial properties to simplify the probability derivation in varied situations. We extend the proposed algorithm to achieve the optimal multi-object acquisition for 1-PNN by deriving an upper bound to facilitate efficient pruning of unnecessary sets of objects. Moreover, for data acquisition of k-PNN, we extract the k-PNN answers with sufficiently large probabilities to trim the search space and properly exploit the result of single-object acquisition for estimating the gain from multi-object acquisition. The experimental results demonstrate that the probability of k-PNN can be significantly improved even with only a small number of objects for data acquisition.
Index Terms—Uncertainty, algorithm design and analysis, query processing, nearest neighbor searches


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
No. Panggil
-
Penerbit
New York : IEEE., 2014
Deskripsi Fisik
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2015
Bahasa
English
ISBN/ISSN
1041-4347
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 27, NO. 2, FEBRUARY 2015
Subjek
TEKNIK
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Yuli/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT. Data Acquisition for Probabilistic Nearest-Neighbor Query
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?