Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

A Doubly Hierarchical Dirichlet Process Hidden Markov Model with a Non-Ergodic Structure

Amir H. Harati Nejad Torbati - Nama Orang; Joseph Picone - Nama Orang;

Abstract—Nonparametric Bayesian models use a Bayesian framework to learn model complexity automatically from the data, eliminating the need for a complex model selection process. A Hierarchical Dirichlet Process Hidden Markov Model (HDPHMM) is the nonparametric Bayesian equivalent of a hidden Markov model (HMM), but is restricted to an ergodic topology that uses a Dirichlet Process Model to achieve a mixture distribution-like model. For applications involving ordered sequences (e.g., speech recognition), it is desirable to impose a left-to-right structure on the model. In this paper, we introduce a model based on HDPHMM that: 1) shares data points between states, 2) models non-ergodic structures, and 3) models non-emitting states. The first point is particularly important because Gaussian mixture models, which support such sharing, have been very effective at modeling modalities in a signal (e.g., speaker variability). Further, sharing data points allows models to be estimated more
accurately, an important consideration for applications such as speech recognition in which some mixture components occur infrequently. We demonstrate that this new model produces a 20% relative reduction in error rate for phoneme classification and an 18% relative reduction on a speech recognition task on the TIMIT Corpus compared to a baseline system consisting of a parametric HMM.

Index Terms—Hidden Markov models, hierarchical Dirichlet processes, nonparametric Bayesian models, speech recognition


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE., 2016
Deskripsi Fisik
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 1, JANUARY 2016
Bahasa
English
ISBN/ISSN
2329-9290
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 24, NO. 1, JANUARY 2016
Subjek
BAHASA, PIDATO
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ety
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A Doubly Hierarchical Dirichlet Process Hidden Markov Model with a Non-Ergodic Structure
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?