Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Expert Prefetch Prediction: An Expert Predicting the Usefulness of Hardware Prefetchers

Biswabandan Panda - Nama Orang; Shankar Balachandran, - Nama Orang;

Hardware prefetching improves system performance by hiding and tolerating the latencies of lower levels of cache and off-chip DRAM. An accurate prefetcher improves system performance whereas an inaccurate prefetcher can cause cache pollution and consume additional bandwidth. Prefetch address filtering techniques improve prefetch accuracy by predicting the usefulness of a prefetch address and based on the outcome of the prediction, the prefetcher decides whether or not to issue a prefetch request. Existing techniques use only one signature to predict the usefulness of a prefetcher but no single predictor works well across all the applications. In this work, we propose weighted-majority filter, an expert way of predicting the usefulness of prefetch addresses. The proposed filter is adaptive in nature and uses the prediction of the best predictor(s) from a pool of predictors. Our filter is orthogonal to the underlying prefetching algorithm. We evaluate the effectiveness of our technique on 22 SPEC-2000/2006 applications. On an average, when employed with three state-of-the-art prefetchers such as AMPM, SMS, and GHB-PC/DC, our filter provides performance improvement of 8.1%, 9.3%, and 11% respectively.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Computer Architecture
No. Panggil
-
Penerbit
Sweden : IEEE Computer Architecture Letters.,
Deskripsi Fisik
IEEE Computer Architecture Letters
Bahasa
English
ISBN/ISSN
DOI 10.1109/LCA.2015
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
ARSITEKTUR KOMPUTER
Info Detail Spesifik
-
Pernyataan Tanggungjawab
deliza
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULLTEXT: Expert Prefetch Prediction: An Expert Predicting the Usefulness of Hardware Prefetchers
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?