Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems

Ashkan Nabavi-Pelesaraei [et al.] - Nama Orang;

This study was conducted in order to determine energy consumption, model and analyze the input–output, energy efficiencies and GHG emissions for watermelon production using artificial neural networks (ANNs) in the Guilan province of Iran, based on three different farm sizes. For this purpose, the initial data was collected from 120 watermelon producers in Langroud and Chaf region,two small cities in the Guilan province. The results indicated that total average energy input for watermelon production was 40228.98 MJ ha–1. Also, chemical fertilizers (with 76.49%) were the highest energy inputs for watermelon production. Moreover, the share of non-renewable energy (with 96.24%) was more than renewable energy (with 3.76%) in watermelon production. The rate of energy use efficiency, energy productivity and net energy was calculated as 1.29, 0.68 kg MJ1 and 11733.64 MJ ha1, respectively. With respect to GHG analysis, the average of total GHG emissions was calculated about 1015 kgCO2eq. ha1. The results illustrated that share of nitrogen (with 54.23%) was the highest in GHG emissions for watermelon production, followed by diesel fuel (with 16.73%) and electricity (with 15.45%). In this study, Levenberg–Marquardt learning Algorithm
was used for training ANNs based on data collected from watermelon producers. The ANN model with 11–10–2 structure was the best one for predicting the watermelon yield and GHG emissions. In the best topology, the coefficient of determination (R2) was calculated as 0.969 and 0.995 for yield and GHG emissions of watermelon production, respectively. Furthermore,the results of sensitivity analysis revealed that the seed and human labor had the highest sensitivity in modeling of watermelon yield and GHG emissions, respectively.

KEYWORDS
Artificial neural networks;Energy;GHG emissions;Modeling;Sensitivity analysis;Watermelon production


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Journal of the Saudi Society of Agricultural Sciences
No. Panggil
-
Penerbit
: King Saud University., 2016
Deskripsi Fisik
Journal of the Saudi Society of Agricultural Sciences (2016) 15, 38–47
Bahasa
English
ISBN/ISSN
-
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
KIMIA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Wati/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT:Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?