Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Cropping Pattern Scenario based on Global Climate Indices and Rainfall in Banyumas District, Central Java, Indonesia

Bayu Dwi Apri Nugroho [et al.] - Nama Orang;

Although there has been a high relationship between global climate and rainfall in Indonesia, but little evidence is available for relationship among global climate indices, rainfall and crop yield to determine cropping pattern. This study evaluates the relationships between global climate indices, which are representative by Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) Nino3.4, rainfall distribution pattern and crop yields in Banyumas district, Central Java, Indonesia. Monthly SOI was collected from the Bureau of Meteorology, Australia, then SST Nino3.4 was collected from National Oceanic and Atmospheric Administration (NOAA), and monthly rainfall data was collected from Agricultural Government of Banyumas district. Artificial Neural Network (ANN) and Empirical Orthogonal Function (EOF) are used in prediction of rainfall, statistical analyses is using to determine the correlation among global climate indices, rainfall pattern and crop yields. For cropping pattern recommendation in each sub district based on climatic water balance, which has significant correlation between SOI-SST and crop yields. The result shows in macro scale, mostly sub-district has significant correlations between global climate indices and crop yields. In regional scale, prediction of rainfall using ANN and EOF were more reliable in rainfall analysis than rainfall-SOI
or rainfall SST Nino3.4 analyses. Based on climatic water balance, and recommendation in cropping pattern are 1) paddycorn/soybean-paddy 2) paddy-corn/soybean-corn/soybean and 3) corn/soybean-corn/soybean-corn/soybean.

Keywords: Global Climate Indices; Rainfall Pattern; SOI; SST; Cropping Pattern; Artificial Neural Network


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Agriculture and Agricultural Science Procedia
No. Panggil
-
Penerbit
: Elsevier., 2016
Deskripsi Fisik
Agriculture and Agricultural Science Procedia 9 ( 2016 ) 54 – 63
Bahasa
English
ISBN/ISSN
doi: 10.1016/j.aaspr
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
KIMIA
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Wati/Agus
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULL TEXT:Cropping Pattern Scenario based on Global Climate Indices and Rainfall in Banyumas District, Central Java, Indonesia
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?