e-journal
High molecular weight poly(p-arylene sulfide ketone): synthesis and membrane-forming properties
Abstract:
High-molecular-weight poly(p-arylene sulfide ketone) (PPSK) was prepared by nucleophilic substitution reaction of 4,4’-diflurobenzophenone (DFBP) and sodium sulfide in the compound solvents of diphenyl sulfone (DPS) and 1,3- dimethyl-2-imidazolidinone (DMI) with catalysts under elevated temperature. The inherent viscosity (ηint) of the PPSK synthesized was 0.703 dl/g. PPSK was characterized by Fourier-transform infrared spectroscopy, elemental analysis, x-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. It was found that the polymer had excellent thermal properties: glass transition temperatur (Tg) was 142.8 °C, melting temperature (Tm) was 362.3 °C. Under nitrogen atmosphere, 5 % (T5%) and 10 % (T10%) weight-loss temperatures were about 498.5 °C and 526.2 °C, respectively, while in the air the T5% and T10% were about 517 °C and 535.8 °C, respectively. The PPSK was found to be a semi-crystalline polymer, as confirmed by XRD. The polymer was insoluble in any solvent except concentrated sulfuric acid at room temperature. A series of the PPSK separating membranes were prepared by dissolving PPSK to concentrated sulfuric acid. The fluxes and the porosities of the separating membranes were in the range of 230–43 L/(m2 · h) and 77.7-84.7 %, respectively. At the same time, these separating membranes showed moderate tensile strength of 1.02-1.88 MPa.
Tidak ada salinan data
Tidak tersedia versi lain