Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

A Comparison of Artificial Neural Networks (ANN) and Local Linear Regression (LLR) Techniques for Predicting Monthly Reservoir Levels

Muhammad Ali Shamim [et al.] - Nama Orang;

Abstract:
Storage dams play a very important role in irrigation especially during lean periods. For proper regulation one should make sure theavailability of water according to needs and requirements. Normally regression techniques are used for the estimation of a reservoirlevel but this study was aimed to account for a non-linear change and variability of natural data by using Gamma Test, for inputcombination and data length selection, in conjunction with Artificial Neural Networking (ANN) and Local Linear Regression (LLR)based models for monthly reservoir level prediction. Results from both training and validation phase clearly indicate the usefulness ofboth ANN and LLR based prediction techniques for Water Management in general and reservoir level forecasting in particular, withLLR outperforming the ANN based model with relatively higher values of Nash-Sutcliffe model efficiency coefficnet (R2) and lowervalues of Root Mean Squared Error (RMSE) and Mean Biased Error (MBE). The study also demonstrates how Gamma test can beeffectively used to determine the ideal input combination for data driven model development.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Civil Engineering
No. Panggil
-
Penerbit
: Springer Science., 2016
Deskripsi Fisik
Journal of Civil Engineering (2016) 20(2):971-977
Bahasa
English
ISBN/ISSN
DOI 10.1007/s12205-0
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
(2016) 20(2):
Subjek
Civil Engineering
Info Detail Spesifik
-
Pernyataan Tanggungjawab
deliza
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULLTEXT: A Comparison of Artificial Neural Networks (ANN) and Local Linear Regression (LLR) Techniques for Predicting Monthly Reservoir Levels
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?