Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Discharge Prediction of Circular and Rectangular Side Orifices using Artificial Neural Networks

A. Eghbalzadeh [et al.] - Nama Orang;

Abstract
A side orifice created in the side of a channel is a structure for diverting some of the flow from the main channel for different purposes. The prediction of the discharge through this side structure is very important in hydraulic and irrigation engineering. In the present study, three artificial neural network models including feed forward back propagation, radial basis function, and Generalized Regression neural networks as well as a multiple non-linear regression method were used to predict the discharge coefficient for flow through both square and circular shapes of sharp-crested side orifices. The discharge coefficient was modeled as a function of five input non-dimensional variables resulted from five dimensional variables, which were the type of orifice shape, the diameter or width of the orifice, crest height, depth and velocity of approach flow. The results obtained in this study indicated that all of the neural network models could successfully predict the discharge coefficient with adequate accuracy. However, according to different performance measures, the accuracy of radial basis function approach was a bit better than two other neural network models. The neural network models predicted the discharge coefficient more accurately than the non-linear regression relation


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Civil Engineering
No. Panggil
-
Penerbit
: Springer Science., 2016
Deskripsi Fisik
Journal of Civil Engineering (2016) 20(2):990-996
Bahasa
English
ISBN/ISSN
DOI 10.1007/s12205-0
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
(2016) 20(2)
Subjek
Civil Engineering
Info Detail Spesifik
-
Pernyataan Tanggungjawab
deliza
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULLTEXT: Discharge Prediction of Circular and Rectangular Side Orifices using Artificial Neural Networks
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?