Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Estimation of herbage biomass and nutritive status using band depth features with partial least squares regression in Inner Mongolia grassland, China

Zhe Gong [ et al.] - Nama Orang;

Abstract:
Although herbage biomass and nutrient status are widely assessed from hyperspectral measurements, certain difficulties are encountered in semiarid and arid regions with low canopy cover. This study investigated the potential of band depth approaches using partial least squares (PLS) regression to estimate herbage biomass and the concentrations of nitrogen (N) and phosphorus (P) in the Inner Mongolia grassland. Field hyperspectral measurements and plant sampling were conducted in desert and typical steppes with different fertilizer levels. The PLS analyses of typical steppe, desert steppe and combined datasets were based on canopy reflectance and first derivative reflectance (FDR) at wavelengths of 400–1000 nm, with consideration of six band depth features extracted from the red absorption region (580–740 nm). The predictive accuracy of the standard full-spectrum PLS (FS-PLS) was compared with that of the iterative stepwise elimination PLS (ISE-PLS) via the cross-validated coefficient
of determination (R2 cv) and the ratio of prediction to standard deviation (RPD). In most of the datasets, the ISE-PLS provided better predictive results than the FS-PLS. The final models used band depth features to estimate herbage biomass (R2 cv = 0.624–0.952, RPD = 1.506–4.539) and pasture N
(R2 cv = 0.437–0.888, RPD = 1.331–2.869) and reflectance and FDR to estimate pasture P (R2 cv = 0.686–0.815, RPD = 1.754–2.267). The models could accurately estimate most of the grass parameters (RPD >1.5), with the exception of pasture N concentrations in the desert steppe dataset due to a range of variation that was too small. The band depth approach with ISE-PLS improved the predictive ability of the method for estimating herbage biomass and the nutrient contents of grasses in sparse grasslands


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
Grassland Science
No. Panggil
-
Penerbit
: Japanese Society of Grassland Science., 2015
Deskripsi Fisik
Japanese Society of Grassland Science, Grassland Science, 62, 45–54
Bahasa
English
ISBN/ISSN
doi: 10.1111/grs.121
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
62, 2015
Subjek
ILMU PADANG RUMPUT
Info Detail Spesifik
-
Pernyataan Tanggungjawab
deliza
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • FULLTEXT: Estimation of herbage biomass and nutritive status using band depth features with partial least squares regression in Inner Mongolia grassland, China
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?