Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

A Framework for Daily Activity Monitoring and Fall Detection Based on Surface Electromyography and Accelerometer Signals

Juan Cheng - Nama Orang; Xiang Chen - Nama Orang; Minfen Shen - Nama Orang;

Abstract—As an essential branch of context awareness, activity awareness, especially daily activity monitoring and fall detection, is important to healthcare for the elderly and patients with chronic diseases. In this paper, a framework for activity awareness using surface electromyography and accelerometer (ACC) signals is proposed. First, histogram negative entropy was employed to determine the start- and end-points of static and dynamic active segments. Then, the angle of each ACC axis was calculated to indicate body postures, which assisted with sorting dynamic activities
into two categories: dynamic gait activities and dynamic transition ones, by judging whether the pre- and post-postures are both standing. Next, the dynamic gait activities were identified by the double-stream hidden Markov models. Besides, the dynamic transition activities were distinguished into normal transition activities and falls by resultant ACC amplitude. Finally, a continuous daily activity monitoring and fall detection scheme was performed with the recognition accuracy over 98%, demonstrating the excellent fall detection performance and the great feasibility of the proposed method in daily activities awareness. Index Terms—Activity awareness, entropy, fall detection, surface electromyography (SEMG).


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS., 2013
Deskripsi Fisik
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 1, JANUARY 2013 p. 38-45
Bahasa
English
ISBN/ISSN
DOI: 10.1109/TITB.20
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNOLOGI KEDOKTERAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Nurasmi
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A Framework for Daily Activity Monitoring and Fall Detection Based on Surface Electromyography and Accelerometer Signals
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?