e-journal
Histology Image Retrieval in Optimized Multifeature Spaces
Abstract—Content-basedhistologyimageretrievalsystemshave shown great potential in supporting decision making in clinical activities, teaching, and biological research. In content-based image retrieval, feature combination plays a key role. It aims at enhancing the descriptive power of visual features corresponding to semantically meaningful queries. It is particularly valuable in histology image analysis where intelligent mechanisms are needed for interpreting varying tissue composition and architecture into histological concepts. This paper presents an approach to automatically combine heterogeneous visual features for histology image retrieval. The aim is to obtain the most representative fusion model for a particular keyword that is associated with multiple query images. The core of this approach is a multiobjective learning method, which aims to understand an optimal visual-semantic matching function by jointly considering the different preferences of the group of query images. The task is posed as an optimization problem, and a multiobjective optimization strategy is employed in order to handle potential contradictions in the query images associated with the same keyword. Experiments were performed on two different collections of histology images. The results show that it is possible to improve a system for content-based histology image retrieval by using an appropriately defined multifeature fusion model, which takes careful consideration of the structure and distribution of visual features.
Index Terms—Content-based image retrieval (CBIR), feature fusion, histology image retrieval, multiobjective optimization.
Tidak ada salinan data
Tidak tersedia versi lain