Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Histology Image Retrieval in Optimized Multifeature Spaces

Zhang, Qianni - Nama Orang; Izquierdo, Ebroul - Nama Orang;

Abstract—Content-basedhistologyimageretrievalsystemshave shown great potential in supporting decision making in clinical activities, teaching, and biological research. In content-based image retrieval, feature combination plays a key role. It aims at enhancing the descriptive power of visual features corresponding to semantically meaningful queries. It is particularly valuable in histology image analysis where intelligent mechanisms are needed for interpreting varying tissue composition and architecture into histological concepts. This paper presents an approach to automatically combine heterogeneous visual features for histology image retrieval. The aim is to obtain the most representative fusion model for a particular keyword that is associated with multiple query images. The core of this approach is a multiobjective learning method, which aims to understand an optimal visual-semantic matching function by jointly considering the different preferences of the group of query images. The task is posed as an optimization problem, and a multiobjective optimization strategy is employed in order to handle potential contradictions in the query images associated with the same keyword. Experiments were performed on two different collections of histology images. The results show that it is possible to improve a system for content-based histology image retrieval by using an appropriately defined multifeature fusion model, which takes careful consideration of the structure and distribution of visual features.

Index Terms—Content-based image retrieval (CBIR), feature fusion, histology image retrieval, multiobjective optimization.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS., 2013
Deskripsi Fisik
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 1, JANUARY 2013 p. 240-249
Bahasa
English
ISBN/ISSN
1089-7771
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
HISTOLOGI
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Qianni Zhang and Ebroul Izquierdo
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Histology Image Retrieval in Optimized Multifeature Spaces
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?