Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Joint Probabilistic Model of Shape and Intensity for Multiple Abdominal Organ Segmentation From Volumetric CT Images

Changyang Li - Nama Orang; Junli Li - Nama Orang; Stefan Eberl - Nama Orang; Michael Fulham - Nama Orang; Yong Yin - Nama Orang; David Dagan Feng - Nama Orang; Xiuying Wan - Nama Orang;

Abstract—We propose a novel joint probabilistic model that correlates a new probabilistic shape model with the corresponding global intensity distribution to segment multiple abdominal organs simultaneously. Our probabilistic shape model estimates the probability of an individual voxel belonging to the estimated shape of the object. The probability density of the estimated shape is derived from a combination of the shape variations of target class and the observed shape information. To better capture the shape variations, we used probabilistic principle component analysis optimized by expectation maximization to capture the shape variations and reduce computational complexity. The maximum a posteriori estimation was optimized by the iterated conditional mode-expectation maximization. We used 72 training datasets including low- and high-contrast computed tomography images to construct the shape models for the liver, spleen, and both kidneys. We evaluated our algorithm on 40 test datasets that were grouped intonormal(34normalcases)andpathologic(sixdatasets)classes. Thetestingdatasetswerefromdifferentdatabasesandmanualsegmentationwasperformedbydifferentclinicians.Wemeasuredthe volumetric overlap percentage error, relative volume difference, averagesquaresymmetricsurfacedistance,falsepositiverate,and false negative rate and our method achieved accurate and robust segmentation for multiple abdominal organs simultaneously.

Index Terms—Computed tomography (CT), expectation maximization (EM), image segmentation, probabilistic principle component analysis (PCA).


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS., 2013
Deskripsi Fisik
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 1, JANUARY 2013 p. 92- 102
Bahasa
English
ISBN/ISSN
1089-7771
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
KESEHATAN
KEDOKTERAN-ALAT DAN PERLENGKAPAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Changyang Li ... [et al.]
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Joint Probabilistic Model of Shape and Intensity for Multiple Abdominal Organ Segmentation From Volumetric CT Images
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?