Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Multivariate Prediction of Subcutaneous Glucose Concentration in Type 1 Diabetes Patients Based on Support Vector Regression

Eleni I. Georga - Nama Orang; Vasilios C. Protopappa - Nama Orang; Diego Ardig`o - Nama Orang; Michela Marina - Nama Orang; Ivana Zavaroni - Nama Orang; Demosthenes Polyzos - Nama Orang; Dimitrios I. Fotiadis - Nama Orang;

Abstract—Data-driven techniques have recently drawn significant interest in the predictive modeling of subcutaneous (s.c.) glucose concentration in type 1 diabetes. In this study, the s.c. glucose prediction is treated as a multivariate regression problem, whichisaddressedusingsupportvectorregression(SVR).Theproposed method is based on variables concerning: 1) the s.c. glucose profile; 2) the plasma insulin concentration; 3) the appearance of meal-derivedglucoseinthesystemiccirculation;and4)theenergy expenditure during physical activities. Six cases corresponding to differentcombinationsoftheaforementionedvariablesareusedto investigatetheinfluenceoftheinputonthedailyglucoseprediction. Theproposed method is evaluated using a dataset of 27 patientsin free-living conditions. Tenfold cross validation is applied to each datasetindividuallytobothoptimizeandtesttheSVRmodel.Inthe case,wherealltheinputvariablesareconsidered,theaverageprediction errors are 5.21, 6.03, 7.14, and 7.62 mg/dl for 15-, 30-, 60-, and 120-min prediction horizons, respectively. The results clearly indicate that the availability of multivariable data and their effective combination can significantly increase the accuracy of both short-term and long-term predictions.

Index Terms—Subcutaneous (s.c.) glucose concentration, support vector machines, type 1 diabetes.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS., 2013
Deskripsi Fisik
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 1, JANUARY 2013 p. 71-81
Bahasa
English
ISBN/ISSN
1089-7771
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
DIABETES-PENELITIAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Eleni I. Georga ... [et al.]
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Multivariate Prediction of Subcutaneous Glucose Concentration in Type 1 Diabetes Patients Based on Support Vector Regression
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?