Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Novel Approaches for Predicting Risk Factors of Atherosclerosis

V. Sree Hari Rao - Nama Orang; M. Naresh Kumar - Nama Orang;

Abstract—Coronary heart disease (CHD) caused by hardening of artery walls due to cholesterol known as atherosclerosis is responsible for large number of deaths worldwide. The disease progression is slow, asymptomatic, and may lead to sudden cardiac arrest, stroke, or myocardial infraction. Presently, imaging techniques are being employed to understand the molecular and metabolic activity of atherosclerotic plaques to estimate the risk. Thoughimagingmethodsareabletoprovidesomeinformationon plaque metabolism, they lack the required resolution and sensitivity for detection. In this paper, we consider the clinical observations and habits of individuals for predicting the risk factors of CHD.Theidentificationofriskfactorshelpsinstratifyingpatients for further intensive tests such as nuclear imaging or coronary angiography. We present a novel approach for predicting the risk factorsofatherosclerosiswithanin-builtimputationalgorithmand particle swarm optimization (PSO). We compare the performance of our methodology with other machine-learning techniques on STULONGdatasetwhichisbasedonlongitudinalstudyofmiddleaged individuals lasting for 20 years. Our methodology powered by PSO search has identified physical inactivity as one of the risk factors for the onset of atherosclerosis in addition to other already known factors. The decision rules extracted by our methodology are able to predict the risk factors with an accuracy of 99.73% which are higher than the accuracies obtained by the application ofthestate-of-the-artmachine-learningtechniquespresentlybeing employed in the identification of atherosclerosis risk studies.

Index Terms—Atherosclerosis, classification, decision trees, feature selection, imputation, particle swarm optimization (PSO), prediction, risk factors


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS., 2013
Deskripsi Fisik
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 1, JANUARY 2013 p. 183-189
Bahasa
English
ISBN/ISSN
1089-7771
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
KEDOKTERAN-ALAT DAN PERLENGKAPAN
ARTERIOSKLEROSIS
Info Detail Spesifik
-
Pernyataan Tanggungjawab
V. Sree Hari Rao and M. Naresh Kumar
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Novel Approaches for Predicting Risk Factors of Atherosclerosis
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?