Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Triaxial Accelerometer-Based Fall Detection Method Using a Self-Constructing Cascade-AdaBoost-SVM Classifier

Cheng, Wen-Chang - Nama Orang; Jhan, Ding-Mao - Nama Orang;

Abstract—In this paper, we propose a cascade-AdaBoostsupport vector machine (SVM) classifier to complete the triaxial accelerometer-basedfalldetectionmethod.Themethodusestheacceleration signals of daily activities of volunteers from a database and calculates feature values. By taking the feature values of a sliding window as an input vector, the cascade-AdaBoost-SVM algorithm can self-construct based on training vectors, and the AdaBoost algorithm of each layer can automatically select several optimal weak classifiers to form a strong classifier, which accelerates effectively the processing speed in the testing phase, requiring only selected features rather than all features. In addition, the algorithm can automatically determine whether to replace the AdaBoost classifier by support vector machine. We used the UCI database for the experiment, in which the triaxial accelerometers are, respectively, worn around the left and right ankles, and on the chest as well as the waist. The results are compared to those of the neural network, support vector machine, and the cascadeAdaBoostclassifier.Theexperimentalresultsshowthatthetriaxial accelerometersaroundthechestandwaistproduceoptimalresults, andourproposedmethodhasthehighestaccuracyrateanddetection rate as well as the lowest false alarm rate.

Index Terms—Feature selection, signal magnitude area (SMA), signal magnitude vector (SMV), sliding window, weak classifier.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS., 2013
Deskripsi Fisik
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 2, MARCH 2013 p. 411-419
Bahasa
English
ISBN/ISSN
2168-2194
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNOLOGI KEDOKTERAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Wen-Chang Cheng and Ding-Mao Jhan
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Triaxial Accelerometer-Based Fall Detection Method Using a Self-Constructing Cascade-AdaBoost-SVM Classifier
  • Triaxial Accelerometer-Based Fall Detection Method Using a Self-Constructing Cascade-AdaBoost-SVM Classifier
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?