Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

ACM-Based Automatic Liver Segmentation From 3-D CT Images by Combining Multiple Atlases and Improved Mean-Shift Techniques

Ji, Hongwei - Nama Orang; He, Jiangping - Nama Orang; Yang, Xin - Nama Orang; Deklerck, Rudi - Nama Orang; Cornelis, Jan - Nama Orang;

Abstract—In this paper, we present an autocontext model (ACM)-basedautomaticliversegmentationalgorithm,whichcombines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform oversegmentationandthenimplementtheregion-basedimagelabeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that theaveragevolumeoverlaperrorandtheaveragesurfacedistance achievedbyourmethodare8.3%and1.5m,respectively,whichare comparable to the results reported in the existing state-of-the-art work on liver segmentation.

Index Terms—Autocontext model (ACM), fuzzy integral, liver segmentation, mean shift, multiclassifier fusion, multiple atlases.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
-
No. Panggil
-
Penerbit
: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS., 2013
Deskripsi Fisik
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 3, MAY 2013 p. 690-698
Bahasa
English
ISBN/ISSN
2168-2194
Klasifikasi
NONE
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
-
Subjek
TEKNOLOGI KEDOKTERAN
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Hongwei Ji ... [et al]
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • ACM-Based Automatic Liver Segmentation From 3-D CT Images by Combining Multiple Atlases and Improved Mean-Shift Techniques
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?