Background and Aims Although pollination of plants that attract flies by resembling their carrion brood and food sites has been reported in several angiosperm families, there has been very little work done on the level of specificity in carrion mimicry systems and the importance of plant cues in mediating such specialization. Specificity may be expected, as carrion-frequenting flies often expl…
Background and Aims Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel–stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when deriv…
Background and Aims Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues.…
Background The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing t…
Background and Aims A detailed knowledge of cytotype distribution can provide important insights into the evolutionary history of polyploid systems. This study aims to explore the spatial distribution of different cytotypes in Pilosella echioides at various spatial scales (from the whole distributional range to the population level) and to outline possible evolutionary scenarios for the observe…
Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are base…
Background and Aims Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the…
Background It has been known for many decades that auxin inhibits the activation of axillary buds, and hence shoot branching, while cytokinin has the opposite effect. However, the modes of action of these two hormones in branching control is still a matter of debate, and their mechanisms of interaction are equally unresolved. Scope Here we review the evidence for various hypotheses that have b…
Background and Aims Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. Methods T…
Background and Aims The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the ear…
Background and Aims Constructing functional–structural plant models (FSPMs) is a valuable method for examining how physiology and morphology interact in determining plant processes. However, such models always have uncertainty concerned with whether model components have been selected and represented effectively, with the number of model outputs simulated and with the quality of data used i…
Background and Aims Plant biomass–density relationships during self-thinning are determined mainly by allometry. Both allometry and biomass–density relationship have been shown to vary with abiotic conditions, but the effects of biotic interactions have not been investigated. Arbuscular mycorrhizal fungi (AMF) can promote plant growth and affect plant form. Here experiments were carried out…
Background and Aims In yeasts and animals, cyclin-dependent kinases are key regulators of cell cycle progression and are negatively and positively regulated by WEE1 kinase and CDC25 phosphatase, respectively. In higher plants a full-length orthologue of CDC25 has not been isolated but a shorter gene with homology only to the C-terminal catalytic domain is present. The Arabidopis thaliana;CDC25 …
Background and Aims High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. There…
Background Ovules as developmental precursors of seeds are organs of central importance in angiosperm flowers and can be traced back in evolution to the earliest seed plants. Angiosperm ovules are diverse in their position in the ovary, nucellus thickness, number and thickness of integuments, degree and direction of curvature, and histological differentiations. There is a large body of literat…
Background and Aims Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the…
Background and Aims Plants have a family of proteins referred to as ICKs (inhibitors of cyclin-dependent kinase, CDK) or KRPs (Kip-related proteins) that function to regulate the activities of CDK. Knowledge of these plant CDK inhibitors has been gained mostly from studies of selected members in dicotyledonous plants, particularly Arabidopsis. Much remains to be learned regarding the differe…
Background and Aims The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and …
Background and Aims The anatomy of Equisetum stems is characterized by the occurrence of vallecular and carinal canals. Previous studies on the carinal canals in several Equisetum species suggest that they convey water from one node to another. Methods Cell wall composition and ultrastructure have been studied using immunocytochemistry and electron microscopy, respectively. Serial sectioning…
Background and Aims The dwarf eelgrass, Zostera noltii, is a predominant inhabitant of soft-bottom intertidal regions along the coasts of northern Europe. It is a monoecious, protogynous angiosperm in which the potential for self-fertilization and inbreeding are high, especially if clone sizes exceed pollen dispersal distances. The aim of the present study was to determine the relationship betw…
Background and Aims Reproductive phase change in Arabidopsis thaliana is characterized by two transitions in phytomer identity, the differentiation of the first elongate internode (bolting transition) and of the first flower (floral transition). An evaluation of the dynamics of these transitions was sought by examining the precision of the corresponding phytomer identity changes. Methods The l…
Background and Aims Rice (Oryza sativa) plants lose significant amounts of volatile NH3 from their leaves, but it has not been shown that this is a consequence of photorespiration. Involvement of photorespiration in NH3 emission and the role of glutamine synthetase (GS) on NH3 recycling were investigated using two rice cultivars with different GS activities. Methods NH3 emission (AER), and gro…
Background and Aims The MADS-box transcription factor AGAMOUS (AG) is an important regulator of stamen and fruit identity as well as floral meristem determinacy in a number of core eudicots and monocots. However, its role outside of these groups has not been assessed explicitly. Examining its role in opium poppy, a basal eudicot, could uncover much about the evolution and development of flower…
Background and Aims Eleusine (Poaceae) is a small genus of the subfamily Chloridoideae exhibiting considerable morphological and ecological diversity in East Africa and the Americas. The interspecific phylogenetic relationships of Eleusine are investigated in order to identify its allotetraploid origin, and a chronogram is estimated to infer temporal relationships between palaeoenvironment chan…
Background and Aims The biological mechanisms of niche complementarity allowing for a stable coexistence of a large number of species in a plant community are still poorly understood. This study investigated how smallstatured forbs use environmental niches in light and CO2 to explain their persistence in diverse temperate grasslands. Methods Light and CO2 profiles and the corresponding leaf c…
Background and Aims The ‘hinged valve gap’ has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiologic…
Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis a…
Background and Aims Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal species used for windbreak and sand stabilization in arid and semi-arid areas in northern China. A model-assisted analysis of its canopy architectural development and functions is valuable for better understanding its behaviour and roles in fragile ecosystems. However, due to the intrinsic complex…
Background and Aims During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape…
Background and Aims The maternal gametophytic calyptra is critical for moss sporophyte development and ultimately sporogenesis. The calyptra has been predicted to protect the sporophyte apex, including the undifferentiated sporogenous region and seta meristem, from desiccation. We investigate the hypothesis that this waterproofing ability is due to a waxy cuticle. The idea that moss calyptrae a…
Backgrounds and Aims Functional–structural models are interesting tools to relate environmental and management conditions with forest growth. Their three-dimensional images can reveal important characteristics of wood used for industrial products. Like virtual laboratories, they can be used to evaluate relationships among species, sites and management, and to support silvicultural design and …
Background and Aims Functional–structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine’s architecture and physiology, our aim is to develop co…
Background and Aims Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype–phenotype model, we present here a three-dimensional functional–structural plant model (FSPM) of rice, in which some model parameters are cont…
Background and Aims Autoregulation of nodulation is a long-distance shoot–root signalling regulatory system that regulates nodule meristem proliferation in legume plants. However, due to the intricacy and subtleness of the signalling nature in plants, molecular and biochemical details underlying mechanisms of autoregulation of nodulation remain largely unknown. The purpose of this study is to…
Background and Aims Homeotic transitions are usually dismissed by population geneticists as credible modes of evolution due to their assumed negative impact on fitness. However, several lines of evidence suggest that such changes in organ identity have played an important role during the origin and subsequent evolution of the angiosperm flower. Better understanding of the performance of wild po…
Background and Aims Transfer cells are plant cells specialized in apoplast/symplast transport and characterized by a distinctive wall labyrinth apparatus. The molecular architecture and biochemistry of the labyrinth apparatus are poorly known. The leaf lamina in the aquatic angiosperm Elodea canadensis consists of only two cell layers, with the abaxial cells developing as transfer cells. The pr…
Background and Aims The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely…
Background The complex events of mitosis rely on precise timing and on immaculate preparation for their success, but the G2/M transition in the plant cell cycle is currently steeped in controversy and alternative models. Scope In this brief review, the regulation of the G2/M transition in plants is commented on. The extent to which the G2/M transition is phosphoregulated by WEE1 kinase and CD…
Background and Aims Root caps release border cells, which play central roles in microbe interaction and root protection against soil stresses. However, the number and connectivity of border cells differ widely among plant species. Better understanding of key border-cell phenotype across species will help define the total function of border cells and associated genes. Methods The spatio-tempora…
Background and Aims Dalbergia nigra is one of the most valuable timber species of its genus, having been traded for over 300 years. Due to over-exploitation it is facing extinction and trade has been banned under CITES Appendix I since 1992. Current methods, primarily comparative wood anatomy, are inadequate for conclusive species identification. This study aims to find a set of anatomical cha…
Background and Aims In perennial plants (especially post-fire resprouters), extant populations may reflect recruitment events in the distant past. This is true of hybrid zones formed by two Banksia species of swamps and woodlands in south-eastern Australia, Banksia robur and B. oblongifolia. Both resprout after fire but recruitment is dependent on periodic fires. Although plants of intermediate…
Background and Aims The influence of temperature on the timing of budbreak in woody perennials is well known, but its effect on subsequent shoot growth and architecture has received little attention because it is understood that growth is determined by current temperature. Seasonal shoot development of grapevines (Vitis vinifera) was evaluated following differences in temperature near budbreak…
Background Timothy is a long-day grass species well adapted for cultivation in northern latitudes. It produces elongating tillers not only in spring growth but also later in summer. As the quantity and quality of harvested biomass is dictated by canopy architecture and the proportion of stem-forming flowering tillers, the regulation of flowering is of great interest in forage grass production. …
Background and Aims The perianthless Piperales, i.e. Saururaceae and Piperaceae, have simple reduced flowers strikingly different from the other families of the order (e.g. Aristolochiaceae). Recent molecular phylogenies proved Verhuellia to be the first branch in Piperaceae, making it a promising subject to study the detailed structure and development of the flowers. Based on recently collecte…
Background and Aims Chenopodium album is well-known as a serious weed and is a salt-tolerant species inhabiting semi-arid and light-saline environments in Xinjiang, China. It produces large amounts of heteromorphic (black and brown) seeds. The primary aims of the present study were to compare the germination characteristics of heteromorphic seeds, the diversity of plant growth and seed prolifer…
Background and Aims Bulbils serve as a means of vegetative reproduction and of dispersal for many plants; this latter aspect making them analogous to seeds. However, germination of bulbils may differ considerably from seeds due to dissimilar anatomical structures and perhaps environmental cue perception. The few laboratory studies done on bulbils suggest that their germination is similar to tha…
Background and Aims The carnivorous plant Venus flytrap (Dionaea muscipula) produces a rosette of leaves: each leaf is divided into a lower part called the lamina and an upper part, the trap, with sensory trigger hairs on the adaxial surface. The trap catches prey by very rapid closure, within a fraction of a second of the trigger hairs being touched twice. Generation of action potentials plays…
Background and Aims Aluminium (Al) resistance in common bean is known to be due to exudation of citrate from the root after a lag phase, indicating the induction of gene transcription and protein synthesis. The aims of this study were to identify Al-induced differentially expressed genes and to analyse the expression of candidate genes conferring Al resistance in bean. Methods The suppression…
Background and Aims The genus Erodium is a common feature of Mediterranean-type climates throughout the world, but the Mediterranean Basin has significantly higher diversity than other areas. The aim here is to reveal the biogeographical history of the genus and the causes behind the evolution of the uneven distribution. Methods Seventy-eight new nrITS sequences were incorporated with existin…
Background and Aims Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. Methods Spa…