Abstract. Hydrogen production from the steam reforming reactions of ethanol and glycerol has been studied over ceria-supported Ir, Co and Ni catalysts with respect to the nature of the active metals and the reaction pathways. For ethanol steam reforming, ethanol dehydrogenation to acetaldehyde and ethanol decomposition to methane and carbon monoxide were the primary reactions at low temperatur…
Abstract. Steam reforming of ethanol over an Ir/CeO2 catalyst has been studied with regard to the reaction mechanism and the stability of the catalyst. It was found that ethanol dehydrogenation to acetaldehyde was the primary reaction, and acetaldehyde was then decomposed to methane and CO and/or converted to acetone at low temperatures. Methane was further reformed to H2 and CO, and acetone w…