Abstract. Porous carbon nanofiber composites (NFCs) were prepared by electrospinning blended solutions of polyacrylonitrile (PAN) and polymethylhydrosiloxane (PMHS) in N,N-dimethylformamide (DMF). A PMHS concentration of 5 wt% was regarded as the optimum concentration to obtain fibers of a uniform size with a homogeneous dispersion of silica, the maximum specific surface area and the highest…
Abstract. A simple and scalable method is reported for fabricating a porosity-controlled carbon nanofibers with a skin–core texture by electrospinning a selected blend of polymer solutions. Simple thermal treatment of the electrospun nanofibers from solution blends of various compositions creates suitable ultramicropores on the surface of carbon nanofibers that can accommodate many ions, …
Abstract. Polyacrylonitrile (PAN)/polyphenylsilane (PPS)-based composite carbon nanofibers (CCNFs) are prepared by one-step electrospinning and subsequent thermal treatment to produce organic-inorganic hybrid CCNFs. We investigate the electrochemical behavior and structural properties of these CCNF materials as a function the PAN/PPS ratio. The CCNFs show large specific surface area, high e…
Abstract. Carbon nanofibers (CNFs) containing boron and nitrogen are prepared from polyacrylonitrile and boron trioxide (B2O3) by using simple electrospinning. The B2O3 introduction into a PAN solution causes a porous structure with stabilized [O]BN functional groups to develop in the processes of stabilization and carbonization. The pore structure and the functional groups such as B atoms …
Abstract. Boron- and nitrogen-containing porous carbon nanofibers (BN-CNFs) were prepared through one-step electrospinning using boric acid (H3BO3) and urea as boron and nitrogen precursors and a subsequent thermal treatment. The BN-CNFs showed higher capacitance and energy/power density values than the control sample of CNFs in aqueous electrolyte; the large surface area of 559 m2 g-1 and…