A B S T R A C T AC and DC electrical measurements were made to better understand the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution of cellulose during carbonization. In Region I (250–350 0C), a decrease in overall AC condu…
A B S T R A C T Thermophysical properties of carbon materials derived from microcrystalline cellulose have been studied under vacuum and compared with earlier measurements conducted under nitrogen to better understand the influence of porosity, composition, microstructure, and atmosphere effects. The effective thermal conductivity in vacuum is lower than that observed in nitrogen primarily…