Elibrary Perpustakaan Universitas Riau

Ebook, artikel jurnal dan artikel ilmiah

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
No image available for this title
Penanda Bagikan

e-journal

Semiconductor Manufacturing Process Monitoring Using Gaussian Mixture Model and Bayesian Method With Local and Nonlocal Information

Jianbo Yu - Nama Orang;

Abstract—Fault detection has been recognized in the semiconductor industry as an effective component of advanced process control framework in increasing yield and product quality. Principal component analysis (PCA) has been applied widely to semiconductor manufacturing process monitoring. However,
the unique characteristics of semiconductor processes—high dimension of data, nonlinearity in most batch processes, and multimodal batch trajectories due to multiple operating conditions—significantly limit applicability of PCA to semiconductor manufacturing. This paper proposes a manifold learning algorithm, local and nonlocal preserving projection (LNPP), for feature extraction. Different from PCA, which aims to discover the global structure of Euclidean space, LNPP can find a good linear embedding
that preserves local and nonlocal information. This may enable LNPP to find meaningful low-dimensional information hidden in high-dimensional observations. The Gaussian mixture model (GMM) is applied to handle process data with nonlinearity or multimodal features. GMM-based Mahalanobis distance is
proposed to assess process states, and a Bayesian inference-based method is proposed to provide the process failure probability. A variable replacing-based contribution analysis method is developed
to identify the process variables that are responsible for the onset of process fault. The proposed monitoring model is demonstrated through its application to a batch semiconductor etch process.

Index Terms—Bayesian inference, fault detection, Gaussian mixture model (GMM), local and nonlocal preserving projection (LNPP), semiconductor manufacturing process.


Ketersediaan

Tidak ada salinan data

Informasi Detail
Judul Seri
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 25, NO. 3, AUGUST 2012
No. Panggil
-
Penerbit
: IEEE., 2012
Deskripsi Fisik
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 25, NO. 3, AUGUST 2012
Bahasa
English
ISBN/ISSN
0894-6507
Klasifikasi
-
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
VOL. 25, NO. 3, AUGUST 2012
Subjek
SEMIKONDUKTOR
Info Detail Spesifik
-
Pernyataan Tanggungjawab
ETY
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Semiconductor Manufacturing Process Monitoring Using Gaussian Mixture Model and Bayesian Method With Local and Nonlocal Information
Komentar

Anda harus masuk sebelum memberikan komentar

Elibrary Perpustakaan Universitas Riau
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?